- 1. Show that a subset A of a topological space X is closed if and only if A contains all its limit points.
- 2. Show that every separable metric space is second countable.
- 3. Let X be a space and $\{A_{\alpha} : \alpha \in I\}$ a family of connected subset of X for which $\bigcap_{\alpha \in I} A_{\alpha}$ is not empty. Show that $\bigcup_{\alpha \in I} A_{\alpha}$ is connected.
- 4. Let $C = \{(t,0) \in \mathbb{R}^2 \mid 0 \le t \le 1\} \cup \{(\frac{1}{n},t) \in \mathbb{R}^2 \mid n \in \mathbb{N}, 0 \le t \le 1\} \cup \{(0,1) \in \mathbb{R}^2\}$ be a subspace of \mathbb{R}^2 .
 - (a) Is C connected?
 - (b) Is C locally connected?
 - (c) Is C path-connected?
- 5. Let X be a connected and locally path connected space.
 - (a) Is every path component of an open subset O of X open?
 - (b) Is X path connected?

Solution Set of Midterm Examination for topology (31, Oct., 2019)

1. Let A be a closed subset of X and x a limit point of A. If $x \notin A$, in other words, x lies in the open set $X \setminus A$, there is an open set U such that $x \in U \subset X \setminus A$. Since U does not contain element of A, x cannot be a limit point of A, a contradiction. Hence $x \in A$ or $A' \subset A$.

Suppose A contains all its limit points. Let $x \in X \setminus A$. Since x is not a limit point of A, there is an open set U about x such that $U - \{x\} \cap A = \emptyset$. Therefore $x \in U \subset X \setminus A$. This means $X \setminus A$ is open or A is closed in X.

- 2. See theorem 4.7.
- 3. See Theorem 5.5.
- 4. Let $C = \{(t,0) \in \mathbb{R}^2 \mid 0 \le t \le 1\} \cup \{(\frac{1}{n},t) \in \mathbb{R}^2 \mid n \in \mathbb{N}, 0 \le t \le 1\} \cup \{(0,1) \in \mathbb{R}^2\}$ be a subspace of \mathbb{R}^2 .
 - (a) Let $K = \{(t,0) \in \mathbb{R}^2 \mid 0 \leq t \leq 1\} \cup \{(\frac{1}{n},t) \in \mathbb{R}^2 \mid n \in \mathbb{N}, 0 \leq t \leq 1\}$. Since K is path connected, K is connected. Note that $K \subset C \subset \overline{K}$ and $\overline{K} = \{(t,0) \in \mathbb{R}^2 \mid 0 \leq t \leq 1\} \cup \{(\frac{1}{n},t) \in \mathbb{R}^2 \mid n \in \mathbb{N}, 0 \leq t \leq 1\} \cup \{(0,t) \in \mathbb{R}^2 | 0 \leq t \leq 1\}$, which is path connected and so connected. Hence C is connected by Corollary of Theorem 5.4.
 - (b) Want to show C in not locally connected at (0, 1). Consider the open ball $B((0, 1), \frac{1}{2})$ containing (0, 1). For any open set U about (0, 1) which is contained in the open ball, there is $\epsilon > 0$ such that $B((0, 1), \epsilon) \subset U$ there is n such that $(\frac{1}{n}, 1) \in C \cap B((0, 1), \epsilon)$. Choose r > 0 so that $\frac{1}{n+1} < r < \frac{1}{n}$. Consider the two disjoint open subsets $(-\infty, r) \times \mathbb{R}$ and $(r, \infty) \times \mathbb{R}$ of \mathbb{R}^2 . The intersections of U and these two open sets makes up the separation of U, which means U cannot be connected.
 - (c) Suppose that $p: [0,1] \longrightarrow C$ is a path starting from (0,1). We assert that the set $p^{-1}(\{(0,1)\})$ is both open and closed in [0,1], and therefore $p^{-1}(\{(0,1)\}) = [0,1]$ by the connectivity of [0,1]. Clearly $p^{-1}(\{(0,1)\})$ is closed since p is continuous. Let's show $p^{-1}(\{(0,1)\})$ is open. Let $B((0,1),\epsilon)$ be an open ball of (0,1) which does not intersect the x-axis. Given an arbitrary point

 x_o of $p^{-1}(\{(0,1)\})$, we can choose an open ball $B(x_o, \delta)$ such that $p(B(x_o, \delta)) \subset B((0,1), \epsilon)$. Since $B(x_o, \delta)$ is connected, $p(B(x_o, \delta))$ is connected. If $(\frac{1}{n}, t_o) \in B((0,1), \epsilon)$, choose r > 0 so that $\frac{1}{n+1} < r < \frac{1}{n}$. Consider the two disjoint open subsets $(-\infty, r) \times \mathbb{R}$ and $(r, \infty) \times \mathbb{R}$ of \mathbb{R}^2 . Because $p(B(x_o, \delta))$ lies in $B((0,1)), \epsilon) \subset C$ and does not touch the x-axis, $p(B(x_o, \delta))$ does not intersect the line x = r. Therefore, it lies in the union of the sets $(-\infty, r) \times \mathbb{R}$ and $(r, \infty) \times \mathbb{R}$. Since $p(B(x_o, \delta))$ is connected, and (0, 1) is contained of the first set, we know that $p(B(x_o, \delta)) \subset (-\infty, r) \times \mathbb{R}$. Hence $(\frac{1}{n}, t_o) \notin p(B(x_o, \delta))$. This means any $(\frac{1}{n}, t_o) \in C - \{(0, 1)\}$ cannot be included in $p(B(x_o, \delta))$ or $p(B(x_o, \delta)) = \{(0, 1)\} \subset B((1, 0), \epsilon)$. Therefore, for any $x_o \in p^{-1}(\{(0, 1)\})$, which implies $P^{-1}((0, 1))$ is open. We can conclude $p^{-1}(0, 1) = [0, 1]$.

- 5. Let X be a connected and locally path connected space.
 - (a) See Theorem 5.18.
 - (b) See Theorem 5.19.