Final Examination for topology (Dec. 19, 2019)

1. Show that the unit n-cube

$$I^{n} = \{(x_{1}, \cdots, x_{n}) \in \mathbb{R}^{n} : 0 \le x_{i} \le 1 \text{ for } i = 1, \cdots, n\}$$

is a compact subspace of \mathbb{R}^n . (25 points)

- 2. Show that the one point compactification of the complex plane is homeomorphic to the unit sphere \mathbb{S}^2 .(20 points)
- 3. Show that the product of a finite number of compact spaces is compact. (25 points)
- Let f: X → Y be a surjective continuous function and suppose that Y has the quotient topology determined by f. Prove that a function g: Y → Z from Y to a space Z is continuous if and only if the composite function gf: X → Z is continuous. (15 points)
- 5. Answer <u>only one problem</u> out of the following three problems. (15 points)
 - (a) For the equivalence relation $(x, y) \sim (z, w)$ on $\mathbb{R} \times \mathbb{R}$ defined by $(x z, y w) \in \mathbb{Z} \times \mathbb{Z}$, is $\mathbb{R} \times \mathbb{R} / \sim$ homeomorphic to the torus $\mathbb{S}^1 \times \mathbb{S}^1$?
 - (b) Let $f : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function defined by f(x, y) = x + y. Is the quotient space \mathbb{R}^2 / \sim_f homeomorphic to \mathbb{R} ?
 - (c) Let ROT(O) be the group of rotations in \mathbb{R}^2 about the origin O. Define an action of ROT(O) on the set $\mathbb{R}^2 \{(0,0)\}$ as $(A,(x,y)) \longmapsto A\begin{pmatrix} x\\ y \end{pmatrix}$ and an equivalence relation \sim as $(x,y) \sim (z,w)$ if there is $A \in ROT(O)$ such that $A\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} z\\ w \end{pmatrix}$. Describe the quotient space $\mathbb{R}^2 \{(0,0)\}/\sim$.

Solution Set of Final Examination for topology (Dec. 19, 2019)

- 1. See the Lemma in p.172.
- 2. Consider the inverse stereographic projection $f: \mathbb{C}_{\infty} \longrightarrow \mathbb{S}^2$ defined by $f(z) = \left(\frac{z+\bar{z}}{|z|^2+1}, \frac{-i(z-\bar{z})}{|z|^2+1}, \frac{|z|^2-1}{|z|^2+1}\right)$ and $f(\infty) = (0,0,1)$. f is continuous at every $z \in \mathbb{C}$ because $z, \bar{z}, |z|^2 + 1$ are continuous and $|z|^2 + 1 \neq 0$. f is continuous at ∞ because for a basic open set $U = \{(x, y, z) \in \mathbb{S}^2 | x^2 + y^2 < r^2, z > 0\}$ of $f(\infty) = (0,0,1), f^{-1}(U) = \{z \in \mathbb{C}_{\infty} | |z| > \frac{r}{1-\sqrt{1-r^2}}\}$ is open since its complement $\{z \in \mathbb{C}_{\infty} | |z| \leq \frac{r}{1-\sqrt{1-r^2}}\}$ is compact.

Similarly we can show the stereographic projection $f^{-1}: \mathbb{S}^2 \longrightarrow \mathbb{C}_{\infty}$, defined by $(x, y, z) \mapsto \frac{x+iy}{1-z}$ and $(0, 0, 1) \mapsto \infty$, is continuous.

- 3. See Theorem 7.7 in p.202.
- 4. If $g: Y \longrightarrow Z$ and $f: X \longrightarrow Y$ are continuous, then $gf: X \longrightarrow Z$ is also continuous.

Suppose $gf : X \longrightarrow Z$ is continuous. For an open set O in Z, $(gf)^{-1}(O) = f^{-1}(g^{-1}(O))$ is open in X. Since $f^{-1}(g^{-1}(O))$ is open in X and $g^{-1}(O) \subset Y$, $g^{-1}(O)$ is open in Y according to the definition of quotient topology determined by f. Therefore, g is continuous.

5. (a) Let $f : \mathbb{R}^2 \longrightarrow \mathbb{S}^1 \times \mathbb{S}^1$ be a continuous surjective function defined by

$$f(s,t) = ((\cos(2\pi s), \sin(2\pi s)), (\cos(2\pi t), \sin(2\pi t))).$$

Notice that $(s,t) \sim (s',t')$ if and only if f(s,t) = f(s',t') or $(s,t) \sim_f (s',t')$. Therefore, the quotient topology on $\mathbb{R} \times \mathbb{R} / \sim$ is in fact the quotient topology on \mathbb{R}^2 / \sim_f . For a basic open set $B((s_o,t_o),\epsilon) = (s_o - \epsilon, s_o + \epsilon) \times (t_o - \epsilon, t_o + \epsilon)$ for sufficiently small $\epsilon > 0$,

$$f(B(s_o, t_o), \epsilon)$$

= {(cos(2\pi s), sin(2\pi s))|s_o - \epsilon < s < s_o + \epsilon}
× {(cos(2\pi t), sin(2\pi t))|t_o - \epsilon < t < t_o + \epsilon},

which is open in $\mathbb{S}^1 \times \mathbb{S}^2$. This means f is an open map. Therefore, $\mathbb{S}^1 \times \mathbb{S}^1$ has the quotient topology determined by f according to

the Theorem 7.15. Let $h : \mathbb{R} \times \mathbb{R} / \sim \longrightarrow \mathbb{S}^1 \times \mathbb{S}^1$ be defined by h([s,t]) = f(s,t) This is a homeomorphism because $\mathbb{S}^1 \times \mathbb{S}^1$ has the quotient topology determined by f, and Theorem 7.16.

- (b) At first, let's think about the quotient topology determined by f and the usual topology. For a basic open interval (a, b) of the usual space \mathbb{R} , $f^{-1}((a, b)) = \{(x, y) \in \mathbb{R}^2 | a < x + y < b\}$, which is open infinite strip bounded by line x + y = a and x + y = b. Hence any open interval (a, b) is also open in the quotient topology determined by f. Hence the usual topology of \mathbb{R} is weaker than the quotient topology determined by f. Let O be a subset of \mathbb{R} in which $f^{-1}(O)$ be open in \mathbb{R}^2 . This means O is an open set in the quotient topology determined by f. Let $k \in O$. Then $f(0,k) = k \in O$ implies $(0,k) \in f^{-1}(O)$. Since $f^{-1}(O)$ is open in \mathbb{R}^2 , we have $\{0\} \times (a, b) \subset f^{-1}(O)$ and therefore the open set $\{(x,y) \in \mathbb{R}^2 | a < x + y < b\} = f^{-1}((a,b))$ is contained in $f^{-1}(O)$. This means $k \in (a, b) \subset O$, and therefore O is the union of open intervals of \mathbb{R} . Therefore, the quotient topology determined by f is weaker than the usual topology of \mathbb{R} . Let $h : \mathbb{R}^2 / \sim_f \longrightarrow$ \mathbb{R} be defined by h([k]) = k. Since \mathbb{R} has the quotient topology determined by f, h is a homeomorphism by Theorem 7.16
- (c) For a given non-zero vector (x, y), the equivalence class [x, y] is a circle obtained by rotating (x, y) about the origin. Therefore, $\mathbb{R}^2 - \{(0, 0)\}/\sim$ is in fact a deleted ray from the origin with the usual topology.